Creationist dissertation on starlight travel problem
Dr. Hartnett does a good job of going over some of the possibilities I mentioned in an earlier post
concerning the problem of starlight. The question is about the apparent long age of the Universe based upon the known speed of light and the distance required for the light to travel from stars to Earth. While God could create the light from the source to Earth at one moment, why would this created starlight show events that must not actually have happened? Would God be deceptive to do this? Or is there another answer to the quandry?
A new cosmology: solution to the starlight travel time problemSummarySolutions proposed for the starlight-travel-time problem in creationist cosmology fall within one of five categories. Probably only two of the categories hold any hope of a solution. Any solution must be self-consistent and the type of solution adopted affects which astronomical arguments can be used as valid evidence for a young universe. A new cosmological model, of the same class as Humphreys’ white-hole cosmology, is presented, which fits the observational evidence from the cosmos. As has been often repeated in creationist literature, the starlight-travel-time problem is particularly important to solve. The problem is simply that in the time available since creation (about 6,000 years) there has not been enough time for light to get to Earth from even the nearest neighbour galaxies (1.5 to 3 million years travel time at constant speed of light c) let alone the most distant galaxies (billions of years travel time at constant c). How then do we see them and how did Adam see them? One common solution that has been presented, and continues to appear, is that the speed of light was enormously faster around Creation Week and has slowed down since (c-decay1). A good example of this may be found in a book by Burgess,2 which has recently been reviewed. The review describes a rapid aging process for stars and a faster speed of light. The universe was accelerated like fast-forwarding a videotape, and after all the light information reached the Earth the rates were reduced to what we now measure. The problem with this model is that the stars would disappear from view as the light slowed down, subsequently taking millions and billions of years to get to Earth. Also, such light arriving at the Earth would show enormous observable blueshifts.3 It doesn’t. A more ingenious mechanism is needed to overcome such obvious objections. In a recent letter to the editor,4 R.E. Kofahl describes an appealing scenario of the heavens being stretched out and the speed of light being up to 600 billion times the present value. Again this presents the same problem: once the speed of light slowed down, how do we now see the stars? The stars provide us with information in the starlight that we see. If the speed of light had been enormously faster in the past we should be able to detect that in the starlight. Unless a plausible mechanism can be demonstrated, that doesn’t lead to absurd physical implications, these types of scenarios will always fail. As an argument against the validity of long ages in the universe and for recent creation, it is not uncommon for creationist authors to point out some astrophysical feature (e.g. the high dispersion velocities of stars in galaxies)5 that is inconsistent with the assumed long ages in big bang cosmology. The authors then use this as evidence for short ages (i.e. 6,000 years) in the cosmos, consistent with a creationist view. But surely that type of argument is only valid in the framework of the creationist model adopted. You can’t have a Humphreys’ type model,6 with time running faster in the cosmos than on Earth and as a result billions of years pass, and use the short age argument together. Within the framework of the adopted model, for example, there may still be insufficient time for the observed spirals to wind up. In the big bang conjecture all galaxies in the universe formed at the same epoch only a billion years after the big bang, which is alleged to have occurred 12–18 billion years ago. So the question may still be asked, ‘why are there still spirals?’ Why haven’t they all wound up?7 This would still be a cogent creationist argument. Self-consistency is essential or we have no argument. The whole underlying problem may be a reluctance by creationist cosmologists to break with the idea that time is absolute and that it has always flowed at a constant rate all throughout the universe. Humphreys’ white-hole model6 made such a break and has generally been well received by creationists. Probably this is because his model involves accelerated time increments happening in the cosmos during 24-hour periods on Earth. It needs to be made very clear that in the cosmos billions of years of ordinary Earth time may have passed, while only 6 x 24-hour days passed on Earth. But a valid mechanism describing how this happened has yet to be discovered. The Humphreys’ model uses an ‘economy’ of miracles and as a result relies heavily on a particular solution of Einstein’s field equations from general relativity to explain the mechanics of the cosmos. In terms of apologetic value, this approach is very appealing but observationally there are difficulties.8 Also, it is important to remember that God was not bound to any laws of physics until the end of the Creation Week. After it ended, the Word says ‘He rested’. Maybe the solution to the starlight travel time problem is in this fact that the conservation laws we observe today were not yet all operating. Wherein lies the solution?There are five possible areas of explanation, in my opinion, all consistent with the text of Genesis, that still maintain the 6 x 24-hour literal days. They are,
Humphreys’ white-hole cosmologyHumphreys’ white-hole cosmology (HWC)6,18,19 model is an excellent attempt to address this important question in creationist cosmology. However it seems to suffer from a few deficiencies.8,20 In this model, all the matter of the universe expanded out through a ‘white hole’ during Creation Week to form the cosmos. At the same time space expanded with the matter, moving by virtue of that expansion. Due to gravitational time dilation, clocks on Earth near the centre of this spherically-symmetric, bounded and finite distribution of matter ran slower than clocks throughout the cosmos. The farther out one looks the faster clocks would appear to run compared to Earth clocks. But because Earth clocks are, at least initially, deep in a gravitational well, they are running slow and the clocks in the cosmos are less affected by gravity and run fast. Let’s say for clocks free from gravity that they run at a normal rate, the same as most clocks run today on or near the Earth. (Let’s not concern ourselves with small corrections due to relative motion or gravitational potential near Earth). If this picture was still the state of the universe that we see today, then starlight would be blueshifted (a gravitational effect) and that blueshift would be greater at greater distances from the Earth. This is not what is observed. We, in fact, see redshifts that are small in magnitude compared to the required magnitudes for the needed blueshifts.8 The HWC model however also involves a ‘timeless’ Euclidean zone where the time coordinate in the general relativity spacetime metric becomes spacelike during the expansion stage. This timeless region collapses as material expands out through the ‘white hole’ and eventually it disappears as it reaches Earth. As addressed in another paper,8 this too has its problems both in its mathematical description and conceptually, as there is insufficient time-dilation locally (between nearby galaxies at least). As a result there remains a difficulty in explaining how light from nearby galaxies would get to Earth in 6,000 years or less. A new modelI propose a new model of type 3. During Creation Week, all clocks on Earth, at least up to Day 4, ran at about 10–13 times the rate of astronomical clocks. Actually the rate is a parameter of the model. All astronomical clocks in the cosmos run at the same rate that we would measure any normal clock today. They have always done so except under special circumstances where they might have been affected by gravity. During this time the rotation speed of the newly created Earth was about 10–13 times the current rotation speed as measured by astronomical clocks, but normal by Earth clocks. By the close of Day 4 the clock rates on Earth rapidly speeded up to the same rate as the astronomical clocks. All of this was maintained under God’s creative power before He allowed the laws of physics to operate ‘on their own’ at the end of Creation Week. An ‘observer’ on Earth at this time looking at the heavens would have seen apparently accelerated motions. Conversely, an ‘observer’ outside our solar system would observe apparently very slow advance of time on Earth clocks. In fact, only in an extra-solar system frame of reference would Earth clocks appear to be running slow. This effect would allow millions and billions of years to pass in the cosmos, while only a few 24-hour days pass on Earth. Hence the light from the most distant stars traveling at the normal speed, c, would have plenty of time to get to Earth. Of course, I am not suggesting there were any such observers, except the Creator, but He doesn’t live within time. The question might be raised as to the spatial region of this special frame around the Earth where clocks run slower up to or during Day 4 of creation. To be consistent with Scripture it doesn’t necessarily need to include the whole solar system. However, it may have, because light from anywhere in the solar system can reach Earth within about 8 hours. If the special frame was confined to the solar system, we could call it ‘young’.21 If the special frame was confined to the Earth only, we could call the solar system ‘old’.22 The difference would make the model testable. However, to be self-consistent with other evidence that makes the solar system appear ‘young’,23 I would place the boundary of the special frame at least outside the solar system. So then this is consistent with my Young Solar System (YSS) model.8 Further investigation is required though to see if this is consistent with other age estimators within our region of space. Of course the stars were made on Day 4. In order for Adam to see light from the nearest stars (other than the sun), on Day 6, it is necessary that the edge of the special Earth frame not extend much beyond Pluto. Therefore due to the massive time dilation effect, during Creation Week, Adam would have been able to see starlight on Earth coming from the visible stars of at least our own galaxy. The light coming from supernova 1987A travelled most of its journey through a portion of Day 4 of Creation Week, when the Earth clock rates were very slow. It arrived at the Earth in 1987, some 200,000 astronomical years24 after it departed. This model is simple in design and makes no unusual predictions about past events. It is similar to Humphreys’ model with some important differences. Time after the end of Day 4 is linear in the whole universe and may be understood in the normal commonsense way. Time during Creation Week up to Day 4 is highly non-linear but only on Earth (and possibly the surrounding solar system), and nowhere else throughout the cosmos. (Note: the HWC model employs different rates of clocks and different passage of time in the cosmos in a highly non-linear fashion, which should be detectable from Earth today.) In my model, the general matter distribution of the stars and galaxies in the universe is the universal frame of all reference clocks. Generally these astronomical clocks have ticked at the same rate. Clocks on Earth since Day 4 also have ticked at the same rate as these universal clocks. Only clocks on Earth up to the close of Day 4 ticked much slower compared to the universal reference clocks. The model does not employ any general relativistic effects as does HWC but it doesn’t impose any implausible conditions either. The Creation Week period, by definition, is not expected to be a period where natural law explanations apply. There are a few points about this model that should be stated here:
CalculationsLet’s do a few simple calculations. Let us suppose that the relative rate of clocks on Earth compared to astronomical clocks during Creation Week was (1) where t0 represents time on Earth and t represents time in the cosmos (same for all clocks everywhere except on Earth). By integrating over the 24 hours of Day 4 (assuming = 0.003 years approximately), we can calculate the time available in the cosmos for a photon to travel to Earth. It follows from (1), (2) There is more than sufficient time during Creation Week. And since light now arriving on Earth left the stars some time during Creation Week, it had plenty of astronomical years to nearly get to Earth. The rest of the journey has been made in the 6,000 years since creation. No accelerated speeds have been assumed, just the constant speed of light that has been repeatably measured for the past 300 years. It is not necessary to suppose that light from all stars in the universe arrived by the close of Creation Week, but at a minimum from our own Milky Way galaxy and maybe farther out to the Virgo Cluster of the order of 70 million light years. The specific dilation rate in (1) is an adjustable parameter of the model, which would determine the extent to how far starlight travelled during Day 4. Expansion of the cosmosThe issue of whether or not the universe rapidly expanded during the Creation Week is not crucial to this model; however it seems the scriptures demand it. Verses like Job 9:8, 37:18; Psalm 104:2; Isaiah 40:22, 42:5, 44:24, etc., may have their fulfilment in an expansion scenario. Since the model provides plenty of astronomical time during Days 1 to 4 on Earth, God could have stretched the heavens out to the billion light-years scales in this period of time, while forming the stars and galaxies on Day 4. And light travelling at constant c still would have gotten to Earth in little time as measured by Earth clocks. A mature creation that is seen as an expanding universe27 may also be part of the description. ConclusionThe amount and passage of time in the cosmos is pertinent to the creationist because we need to interpret the evidence within a self-consistent framework of the model we adopt. Therefore in a model of type 1 or type 3, which incorporate astronomical time, explanations of the rotation curves in galaxies,28 the Tully-Fisher law29 or the apparent excess of mass inferred from the dynamics of equilibrium clusters of galaxies become an issue to creationist cosmology. A new model, of a type similar to Humphreys’, has been described that allows billions of years to pass in the cosmos but only 24 hours on Earth during Day 4. In this model, the laws of physics are suspended while creation is in progress and enormous time dilation occurs between Earth clocks and astronomical clocks. This solves the light-travel-time problem faced by creationist cosmology and makes all astronomical evidence fit the Genesis account. No non-physical requirements are placed on the model. References
|